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Two-phase displacement in Hele-Shaw cells : 
experiments on viscously driven instabilities 

By C.-W. PARK, S. G O R E L L ~ A N D  G. M. HOMSY 
Department of Chemical Engineering, Stanford University, Stanford, California 94305 

(Received 21 June 1983 and in revised form 2 December 1983) 

Experiments on the instability of the interface in two:phase displacements in Hele- 
Shaw cells were conducted using air and a viscous oil as the working fluids. The 
experiments had two objectives: (i) to provide quantitative measurements of the 
growth constants of the instability which occurs when a less-viscous fluid displaces 
a more-viscous one, and (ii) to compare the measured dispersion relations with the 
predictions of the recent theory of Park & Homsy (1984). The experiments were made 
by analysing the growth characteristics of between 10 and 20 Fourier modes 
describing the shape of the interface between displaced and displacing fluids, using 
still photography. For capillary numbers Ca = p U / y  less than approximately 4 x 
the agreement is only fair, owing to substantial edge effects produced by a nearly 
static contact line near the lateral boundaries of the cell. For 4 x lop3 < Cu < 1 x 
theory and experiment agree to within the accuracy of the measurements. Location 
and verification of the behaviour of modes near the predicted cut-off wavenumber 
give partial verification of the theory of Park & Homsy. 
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1. Introduction 
The displacement of one fluid by another in a Hele-Shaw cell constitutes an 

important problem in fluid mechanics (Hele-Shaw 1898). Because of the well-known 
analogy between the depth-averaged velocity and pressure fields in a Hele-Shaw flow 
and two-dimensional flow in porous media (Stokes 1898; Lamb 1932), these 
experiments have been used to study and understand the stability of two-phase 
displacement processes in porous media. I n  addition to  the mathematical analogy, 
the Hele-Shaw cell is a very simple, well-characterized system which, in contrast to  
a porous medium, provides good visibility of the flow motion. Thus many experiments 
have been performed in Hele-Shaw cells, with accompanying mathematical treatments 
(Saffman & Taylor 1958; Chouke, Van Meurs & Van der Poell959; White, Colombera 
& Philip 1976, 1977). 

In  an appendix to their paper, Saffman & Taylor showed that the analogy to 
porous-media flow applies even if a constant-thickness film of the displaced fluid is 
left behind the advancing meniscus between the fluids. At issue then are the jump 
or boundary conditions that hold a t  the interface. 

Saffman & Taylor solved a two-dimensional potential problem to get the shape of 
the predominant single finger a t  steady state assuming continuity of pressure (minus 
the pressure jump across the meniscus) a t  the interface. There are an infinite number 
of solutions to this problem as posed. Selecting that solution corresponding to the 
observed ratio of finger to channel width yielded good agreement in the profile shape 

t Present address: Shell Development Co., Houston, Texas. 
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when a modified capillary number is large. Considerable discrepancy occurs when 
the capillary number is small. In  an attempt to remove the indeterminacy of the 
Saffman-Taylor solution, McLean & Saffman (1981) considered the effect of surface 
tension by adopting essentially the following ad hoc pressure-jump condition : 

y is the interfacial tension between the two fluids, b is the half-thickness of the Hele- 
Shaw cell and R is the radius of curvature of the projection of the tip of the advancing 
meniscus onto a horizontal plane. Pitts (1980) modified b with the thought that the 
transverse radius of curvature will be smaller than b because of the viscous traction. 
Even though his results match well with the experimental results, this was accomp- 
lished by introducing an adjustable parameter in an ad hoc fashion. McLean & 
Saffman (1981) also used a slight modification of (1.1) which takes into account the 
existence of a film of wetting fluid of constant thickness in the displaced region. Again 
the results predicting the finger width as a function of capillary number do not agree 
with experiment. They realized that these discrepancies may not be removed without 
solving the three-dimensional problem which will result in a correct pressure jump 
condition. Saffman (1982) discussed this pressure-jump condition from the point of 
view of dimensional analysis. Recently Park & Homsy (1984) solved a three- 
dimensional free-boundary problem in a Hele-Shaw cell by developing a double- 
expansion method in which the small parameters were the capillary number and the 
ratio of the two characteristic lengthscales : the transverse and lateral dimensions of 
the interface. An important assumption was that the wall of Hele-Shaw cells is 
completely wet by the displaced fluid. The result yields the pressure- jump condition 
across the interface, the asymptotic form of which is 

A P  = y ($ + k) 
This result implies two important points. One is that, even though the flow is very 
slow and quasi-static, the ad hoc jump condition (1.1) is not applicable. The other 
is that (1.1 ) is a correctform for the pressure jump condition in Hele-Shaw cells when 
the relevant conditions of small capillary number, small lateral variation of the 
interface, and wetting of the displaced fluid, are satisfied. Even though (1.2) is not 
directly applicable to the Saffman-Taylor problem because it holds only when the 
lateral variation of the interface is small, its origin and derivation may shed some 
light on the intriguing fundamental discrepancy between theory and experiment as 
discussed by Saffman & Taylor (1958) and McLean & Saffman (1981). 

The linear instability theory of one-dimensional displacement is well known 
(Chouke et al. 1959), and predicts the following dispersion relation: 

Herep is the viscosity, K represents the permeability and a(k) is the growth constant 
corresponding to a wavenumber k. I n  Hele-Shaw cells K ,  and K ,  become proportional 
to ;b2 as derived by Stokes (1898) and Saffman & Taylor (1958), and y e  is $ty 
according to the recent work of Park & Homsy (1984). These results hold in the limit 
of zero capillary number. 

Virtually all of the previous experiments on the viscous fingering instability in 
Hele-Shaw cells have been qualitative in nature. Most of these studies have compared 
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the observed nominal wavelength of the instability with the wavelength of the maxi- 
mum growth rate given by a theory based on the ad hoc condition ( 1 . 1 )  (see e.g. 
Chouke et al. 1959; White et al. 1976, 1977; Gupta & Greenkorn 1974). When these 
comparisons are made, the agreement is fairly good. The reason for this can be seen 
by comparing the ad hoc condition ( 1 . 1 )  with the correct one (1.2). Since a t  low 
capillary numbers the two differ by only a factor of fn, the preferred wavenumber 
differs by a factor of (in);. The experiments to date have not been sufficiently 
accurate to distinguish between the two results, but see the discussion of the data 
of White et al. (1976) in $4. To our knowledge, there have not been any attempts 
to measure the growth rates of the viscous instability. 

Thus the objectives of our experiments were : (i) to measure growth rates and the 
dispersion relation over a range of capillary numbers, and (ii) to obtain, in so far as 
was possible, experimental corroboration of the correct boundary condition, (1.2). 

2. Apparatus and procedure 
Figure 1 represents a schematic of the apparatus, which has four main elements: 

the Hele Shaw cell, an oil pump, a microcomputer and a camera. The Hele Shaw cell 
consisted of two sheets off  in. thick Pyrex plate glass separated by 2.5 cm wide flat 
rubber strips placed along the edges of the cell to serve as both a separator to maintain 
the gap thickness and a gasket to seal the edges. Two thicknesses of gaskets, 
approximately 0.06 and 0.08 cm, were used. The flow channel had nominal dimensions 
120 cm in length and 20 cm in width. Individual bent aluminium strips were 
fabricated to act as clamps. These were glued every 11 cm along the sides of the top 
and bottom plates, and set so that holes for bolts on each matching topbot tom piece 
were aligned. Bolts were then placed in each clamp to keep the plates together with 
a uniform gap thickness. This arrangement allowed the cell to be dismantled for 
cleaning while maintaining an acceptable degree of reproducibility of experimental 
conditions. One end of the cell was open to the atmosphere while the other was fitted 
with a Plexiglas endpiece bolted to the glass and sealed with a silicone rubber gasket. 

The pump was a Masterflex integral-drive variable-speed peristaltic pump (Cole- 
Parmer Model 7534-30), whose speed could be set manually or controlled by the 
microprocessor. Calibration of the pump for any of several removable pump heads 
resulted in a wide range of possible flow rates. 

As noted, a microprocessor (Apple 11-Plus) was available for control and subsequent 
data analysis. I n  addition, a real-time clock (Mountain Computer Co.) was available. 
A 35 mm SLR camera was mounted vertically above the Hele-Shaw cell and could 
be translated to a position directly above the interfacial position. 



278 C.- W .  Park, 8. Gore11 and G.  M .  Homsy 

Run no. Ic (cm) Lr (cm/s) p (cP) y (dyn/cm) Ca = p U / y  

1 0.08 0.060 77 30.7 1 .5  x 10-3 

3 0.056 0.052 230 31.3 3.8 x 10-3  
4 0.056 0.062 259 31.3 5.1 x 10-3 
5 0.08 0.090 222 31.3 6.4 x 1 0 - 3  

2 0.08 0.097 75.5 30.7 2.4 x 

6 0.08 0.120 222 31.3 8.5 x 

TABLE 1 

Air and oil were used as the two fluids, in order to assure that the displaced fluid 
wets the glass. Therefore the viscosity of the displacing fluid could be neglected. 

Two different oils were used. One was Shell Carnea 100, which had a viscosity of 
2.30 P and a surface tension of 31.3 dyn/cm at room temperature. The other was a 
blend of Shell Carnea 100 and Shell IVL 450, which had a viscosity of 0.75 P and a 
surface tension of 30.7 dyn/cm a t  room temperature. The viscosity and the surface 
tension were measured as functions of temperature using a Cannon-Fenske viscometer 
and a ring tensiometer respectively. 

To measure the gap thickness, which is the most important dimension of the Hele- 
Shaw cell, we used an indirect method. The cell was tilted into a vertical position 
and filled with oil. The oil was then drained under gravity very slowly while the 
amount of oil collected over time and the corresponding locations of the air-oil 
interface were measured. A graph of the volume of the oil versus the location of the 
interface should be a straight line with the slope equal to the cross-sectional area. 
Since the width of the channel was 20 cm, the corresponding average gap thickness 
could be calculated through a linear-regression routine. The results gave 0.08 cm and 
0.056 cm as the thicknesses of each rubber strip. The linear-regression coefficient of 
these data was 0.999, which is a measure of the uniformity of the gap thickness. 

The experimental procedure was as follows. The cell, initially filled with oil, was 
tilted vertically so that gravity would help flatten the interface. It was then rotated 
slowly to a horizontal position while maintaining the flat interface. To produce the 
instability the oil was then pumped out at a steady rate through a Tygon tubing, 
which was connected to  the Plexiglas endpiece. Still photographs were taken 
approximately every 10 s from the beginning of the displacement: only the initial 
stages of instability were studied here, in order to  assure that the measurements were 
in the linear regime. The elapsed time associated with each picture was measured 
accurately using the clock of the Apple I1 computer, which was connected with the 
camera shutter switch by a simple electric circuit. Photographs were then enlarged 
to the size of approximately 20 cm x 25 cm to allow quantitative analysis of the 
growing instability. 

Six experimental runs were made in which the oil viscosity, displacement velocity 
and gap thickness were all varied. The surface tension varied only slightly between 
the two oils, and cannot be considered as having been varied in this study. Table 1 
gives the range of variables covered. As shown, the capillary number was varied from 
1.5 x 10-3 to 8.5 x 10-3. 
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3. Results and analysis 
Two sets of experimental results appear in figure 2 .  Figure 2 ( a )  shows the growth 

of the instability for Ca = 1.5 x (run l ) ,  and figure 2 ( b )  shows that for 
Ca = 8.5 x lop3 (run 6). We note from these photographs that the interface between 
air and oil was almost pinned a t  the two edges. This occurs because the rubber strips 
were readily wetted by the oil, and it undoubtedly leads to some error due to edge 
effects. Similar edge effects can be seen in the studies of White et al. (1976, 1977). 
In  analysing the results we therefore eliminated a t  least 1.5 wavelengths at each edge 
from consideration and attempted to get as many fingers as possible, hopefully 
minimizing the edge effect. (We will refer to the nominal wavelength as W ;  see figure 
3.) As we shall see this was not always successful, especially a t  low capillary number. 
The only way to get more fingers while keeping the capillary number small was to 
decrease the gap thickness, but this can only be done to  a certain extent before gap 
non-uniformities would begin to significantly influence the results. 

The photographs were analysed as follows. The picture corresponding to the initial 
interface was superposed on each photograph in a sequence. This resulted in a sequence 
of representations which showed the interface a t  both the initial and a later time. 
To minimize the edge effect, a portion of the picture near the edges was neglected 
and the remaining width D of the photograph, was discretized into N equally spaced 
points as shown schematically in figure 3. The distance between the initial and the 
displaced interface was then measured a t  each of the N points. These measured 
distances provided a record of the location of N material points and thus described 
the change in the shape of the interface as it was convected through the apparatus. 

By applying a discrete Fourier transform (DFT) to this sequence of measured 
distances, the spectral components of the displaced interface were determined a t  each 
time. That is, the location of the interface a t  each time could be decomposed into 
the Fourier perturbation modes as follows : 

where f ( t ,  z )  represents the location of the interface as a function of time and position, 
and as noted D is the width over which the discretization was performed. Depending 
upon the importance of the edge effect, both D I L  and W I L  should be small. If the 
growth of disturbance is in the linear regime, A m ( t )  is given by 

(3.2) 

where a,  is a constant which is 'determined by the initial condition of the interface, 
and am is the growth constant corresponding to the mode m .  A semilogarithmic plot 
of Am(t )  as a function of time should therefore yield a straight line, and the slope 
of i t  should be the growth constant gm. Figure 4 represents the semilog plot of A,(t) 
of the experimental result taken from run 4 for several wavenumbers. When this is 
done the lower modes may easily be identified as unstable. As can be seen from figure 
4(a),  the data points fit on straight lines, the linear regression coefficients of which 
were larger than 0.98, implying that the instability grows exponentially in time in 
accordance with the predictions of linear instability theory. Even though the three 
lines ( 1 , 2 , 3  of figure 4 a )  are almost straight with regression coefficients near unity, 
they seem to show a trend of becoming concave a t  later times which may represent 
the fact that  they are becoming saturated, i.e. they are deviating from the linear 
regime. This phenomenon is more prominent for the faster-growing modes. For 

A m ( t )  = a m  exp { a m  t>, 
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(a 

FIGURE 2 ( a ) .  For caption see facing page. 



Two-phase displacement in Hele-Shaw cells : experiments 

FIGURE 2 .  Instability of an air-oil interface; ( a )  run 1 ,  Ca = 1.5 x 
( b )  run 6, Ca = 8.5 x lower phase is oil. 

28 1 
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FIGURE 3. Schematic of a displacement. 
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FIGURE 4. Growing and neutral modes of an instability (run 4): 
(a )  growing modes; ( b )  neutral modes. 

example, in the case of line 3 of figure 4 ( a ) ,  the last point was eliminated from 
consideration when computing the slope. In  figure 4 ( b ) ,  even though the mode 
amplitudes, the values of which are quite small, are less reliable, i t  can be said that 
each mode does not exhibit sustained exponential growth, implying that these modes 
are neutrally stable. In  this point of view, mode 4 (4 of figure 4 ( a ) ) ,  which starts to 
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deviate from exponential growth, may be near the cutoff wavenumber. Thus such 
semilogarithmic plots can be used to  discriminate easily between unstable and stable 
modes. The stable modes appear nearly neutral and not damped owing to the 
constant occurrence of noise and small perturbations in the system. 

The average velocity U of the interface was calculated from the data of A,(t) versus 
time. Because A,(t) represents the averaged location of the interface as a function 
of time, a plot of A,(t)  versus t yields a straight line, the slope of which is the average 
velocity of the interface. Thus U was calculated by a linear-regression routine, and 
the linear-regression coefficient was always larger than 0.99 for every run. The total 
amount of oil pumped out during the experiment was measured to calculate the flow 
rate, which gives the average velocity when divided by the cross-sectional area. 
Therefore the average velocity calculated from the zero harmonic could be checked 
by comparing i t  with that calculated from the amount of oil collected. The difference 
between them was less than 5 yo in all cases. 

The linear dispersion relation is, from (1 .3) ,  

where d is the gap thickness of the Hele-Shaw cell and uk is the growth constant 
corresponding to the wavenumber k .  As explained above, (3 .3)  holds only in the limit 
of small capillary number. Because the displacing fluid was air, p2 is negligible 
compared withpl, the viscosity of the oil. Thusp2 x 0, and we set p1 = p. The relation 
between the harmonic number m and the wavenumber k is given by 

2xm k = -  
D '  

Therefore the dispersion relation (3 .3)  becomes 

2 x u  7t4d2y 
Urn=-  m--m3. D 6 p D 3  

(3.4)  

(3 .5a)  

Because each quantity in (3 .5a)  is known, the experimental results for urn can be 
compared with the theory. Since (3 .5a)  can be rewritten as 

(3 .5b)  

it  is possible to represent the results in normalized form, in which CT and m are scaled 
as follows: 

Therefore the normalized dispersion relation becomes 

(3 .5c)  

( 3 . 5 4  

(3 .5e)  

Figure 5 shows the normalized dispersion relations shown as a solid curve, together 
with the experimental results. Also shown in the figure is an arrow on the abscissa, 
giving the normalized cut-off wavenumber given by the ad hoc expression ( 1 . 1 ) .  For 
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FIQURE 5(a-c). For caption see facing page. 

each run, W / L  and W I D  are specified in the figures. Implications of figure 5 are 
discussed in $4. Table 2 shows the information taken from the replicate analyses of 
run 3 by slightly shifting the analysis region D in order to  make approximate 
estimates of probable errors in a and u. In  (3.5c,  d )  d ,  y ,  p and D are fixed. Therefore 
table 2 gives the approximate error due to the measurements of the displacement of 
the interface. Since the difference in a comes from the difference in U ,  the average 
velocity of the interface, which was calculated from zero harmonic as explained, only 
one datum is actually given in table 2, even though four data are listed. The average 
velocities for each analysis were 0.052 cm/s and 0.053 cm/s, and they made a 1.3 yo 
relative error in a. 

I n  case of  ACT^, since the two sets of analyses were performed for four modes, four 
data are available as listed in table 2. They indicate a probable error of approximately 
10 yo in the measurement of growth constants. 

4. Discussion and conclusion 
Figure 5 shows that at capillary numbers that are larger than about 5 x lop3 (figures 

5d-f) the experimental results agree well with theory but a t  the smaller capillary 
numbers (figures 5a-c) they show discrepancies, i.e. the modes of high wavenumbers, 
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FIGURE 5. Normalized dispersion relations. 

m a1 a2 Aa g1  g a  I A d  
1 0.981 0.968 0.013 1.066 0.947 0.119 
2 1.961 1.936 0.025 1.275 1.032 0.243 
3 2.942 2.904 0.038 0.943 0.677 0.266 
4 3.923 3.872 0.051 1.520 1.658 0.138 

TABLE 2 

which are larger than the theoretical cut-off wavenumber, are also growing, even 
though the order of magnitude of the growth constants agrees with theory. These 
discrepancies are more prominent as the capillary number decreases or as the value 
of W I L  increases. This was puzzling to us a t  first, since the theory is asymptotically 
correct as Ca -+ 0. A possible explanation for these discrepancies is as follows. At low 
capillary numbers, two effects need to  be considered which would be absent in an 
apparatus of very large horizontal extent. First, the number of fingers is small, and, 
secondly, the growth constant is lower the smaller the capillary number. These effects 

10-2 
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A, (lo-’ m) 
FIGURE 6. Comparison of the observed wavelengths with theoretical ones 

(Cu = 10-3-10-2) (taken from White et al. 1976). 

make themselves felt as follows. As mentioned above, the interface stayed nearly fixed 
at the edges of the cell, leading to  an edge effect which may be minimized but never 
completely eliminated. Obviously, the number of fingers must be fairly large for the 
experiment to be a good approximation to being infinite in lateral extent, i.e. W / L  
must be small. The other way in which the edge effect enters is more subtle. Since 
the dimensional growth constant becomes small a t  small Ca, a long period of time 
must pass in order to obtain measurable growth of disturbances relative to the 
uniform displacement of the interface. But, since the edge of the interface is nearly 
pinned, the displacement is not laterally uniform, which obviously influences the 
events toward the centre of the domain. Conversely, both the value of W / L  and the 
time over which measurable growth occurs decrease with increasing capillary number, 
leading to a minimization of the edge effect. 

Both these factors are clearly shown in figure 2, where a t  the smallest value of Cu 
there are only three wavelengths and substantial growth occurs over - 110 s, while 
a t  the largest value of Ca roughly 6-1 1 wavelengths exist and the growth occurs over - 40 s. Thus we consider the very-low-Ca data to be inaccurate for these two reasons, 
and good experimental accuracy is a compromise between the need to operate a t  low 
Ca where the theory applies and higher Ca where the edge effects may be minimized. 
The data shown in figure 5 together with the visualizations tend to corroborate this 
explanation, as the trends are consistent with it. 

Considering the data in figures 5 (d-f ), we note that although the accuracy in 
is low the general trend of the data is correct. Furthermore, recalling that the 
semilogarithmic plots can readily distinguish unstable from stable modes, we have 
a t  least five instances of observing unstable modes which would be damped according 
to the ad hoc boundary condition. We consider this to be evidence for the correctness 
of (1.2), but the data are not accurate enough to distinguish unequivocally between 
the two predictions. 

Therefore we can conclude that for the intermediate capillary numbers 
(Ca > 5.1 x 

(i) 

at which we could minimize the edge effect 
(T is in reasonable agreement with theory. 
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(ii) positive u near the cut-off corroborates the theory of Park & Homsy, 
(iii) no modes grow above the cut-off wavenumber. 
A survey of experiments performed by previous investigators in Hele-Shaw cells 

yields evidence which is relevant to our recent work. Chouke et al. (1959) did some 
experiments to verify their theory. White et al. (1976, 1977) also performed many 
Hele-Shaw experiments to study the stability problem in a porous medium. I n  
comparing results with theory, both assumed the ad hoc boundary condition (1.1). 
They measured the average finger spacing, which they assumed to correspond to the 
wavelength of the maximum growth rate, and compared i t  with their theoretical 
calculations. Although there is nominally good agreement between their theories and 
experiments, careful investigation of their experimental results indicates that their 
theories always overestimated the wavelength of the maximum growth rate. According 
to our recent work, the wavelength of maximum growth rate is (in): times that of 
their theories, implying that the correct wavelength is 11 % smaller than calculated. 
Figure 6, taken from the experiments of White et al. (1976), the capillary numbers 
of which were between and shows that, although the errors in this kind of 
measurement are large, the observed wavelength is consistently below that given by 
the ad hoc theory. The correct theory is shown as the dashed line hobs x 0.89h,, and 
the data would appear to support our theory. 

This work was supported by the U.S. Department of Energy, Office of Basic Energy 
Sciences. 
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